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accumulated from these studies, leading to the development of phenomenological correlations and scal-
ing parameters of the countercurrent flow limitation (CCFL). However, most of the proposed correlations
apply under arelatively narrow range of conditions, generally limited to the test section conditions and/or
geometry. Moreover the development of mechanistic models based on the underlying physical processes
has been limited. In contrast to this mechanistic form of modelling, the implementation of computational
fluid dynamics (CFD) techniques has also been pursued, but the considerable robust three-dimensional
(3D) closure relations for this application remain an unachieved goal due to lack of detailed phenomeno-
logical knowledge and consequent application of empirical one-dimensional experimental correlations
to the multidimensional problem.

This paper presents a comprehensive review of research work on countercurrent gas-liquid two-phase
flow in a PWR hot leg and provides direction regarding future research on this topic. In the introductory
section, the problems facing current research are described. In the following sections, recent experimental
as well as theoretical research achievements are overviewed. In the last section, the problems that remain
unsolved are discussed, along with some concluding remarks. It was found that only limited theoretical
developments exist in the literature, however highly reliable experimental data are needed to support
this effort. Additional work, both analytical and experimental, needs to be carried out on the effects
of mass transfer on countercurrent flow limitation to improve the existing correlations and analytical

models.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Steam generators in a pressurized water reactor (PWR) nuclear
power plant transfer heat from a primary coolant (pressurized
water at about 15MPa) to a secondary coolant (pressurized
water/steam at about 7 MPa). The primary coolant water is heated
in the core and passes through the steam generators, where it trans-
fers heat to the secondary coolant water to generate steam. The
steam then drives a turbine that turns an electric generator. Steam
is condensed and returns to the steam generator as feedwater. Hot
leg pipes connect the reactor pressure vessel (RPV) and the steam
generator (SG), and consist of a combination of horizontal sections,
single or multiple elbows, and inclined or vertical sections depend-
ing on the manufacturer of the reactor. In the case of the German
Konvoi PWR, the hot leg consists of a horizontal section, an elbow
and an inclined section as shown in Fig. 1. On the other hand, the
hot leg of the CANDU reactor is made up of sections of horizon-
tal, vertical, and inclined pipes joined to one another by elbows of
varying angles (Kawaji et al., 1989).

In the event of hypothetical accident scenarios in PWR, emer-
gency strategies have to be mapped out, in order to guarantee the
reliable removal of decay heat from the reactor core, also in case of
component breakdown. One essential passive heat removal mech-
anism is the reflux cooling mode. This mode can appear for instance
during a small break loss-of-coolant-accident (LOCA) or because of
loss of residual heat removal (RHR) system during mid loop opera-
tion at plant outage after the reactor shutdown.

In the scenario of a loss-of-coolant-accident (LOCA), which is
caused by the leakage at any location in the primary circuit, it is con-
sidered that the reactor will be depressurized and vaporization will
take place, thereby creating steam in the PWR primary side. Should
this lead to “reflux condensation”, which may be a favourable event
progression, the generated steam will flow to the steam generator
through the hot leg. This steam will condense in the steam gener-
ator and the condensate will flow back through the hot leg to the
reactor, resulting in countercurrent steam/water flow. In some sce-
narios, the success of core cooling depends on the behaviour of this
countercurrent flow.

The stratified counter-current flow of steam and condensate
is only stable for a certain ranges of steam and water mass flow
rates. For a given condensate flow rate, if the steam mass flow
rate increases to a certain value, a portion of the condensate will
exhibit a partial flow reversal and will be entrained by the steam
in the opposite flow direction towards the steam generator. This
phenomenon is known as counter-current flow limitation (CCFL)
or the onset of “flooding”. In case of an additional increase of the
steam flow, the condensate is completely blocked and the reflux
cooling mode ends. In this situation the cooling of the reactor core
from the hot leg is impossible, but may be continued by coolant
drained through the cold leg to the downcomer. Fig. 1 illustrates
the counter-current flow in the hot leg under reflux condensation
conditions.

Over several decades, a number of experimental and theoreti-
cal studies of countercurrent gas-liquid two-phase flow have been
carried out to understand the fundamental aspect of the flood-
ing mechanism and to prove practical knowledge for the safety
design of nuclear reactors. Starting from the pioneering paper of
Wallis (1961), extensive CCFL data have been accumulated from
experimental studies dealing with a diverse array of conditions.

The accumulated data have led to the development of both empir-
ical correlations and analytical models. Bankoff and Lee (1986)
reviewed the flooding research in vertical and inclined channels.
They presented a summary of the several important parameters
on flooding and the available flooding models. They also suggested
that more careful experimentation on the parametric dependence
is required to investigate the important parameters.

Krishnan (1987) performed a review of the two-phase counter-
current flow in upright pipe elbows as an analogy of the CANDU
reactor feeder pipes (hot leg pipe). A total of 4 research papers that
were available in the year of 1986 (Siddiqui et al., Wan and Krish-
nan, Wan, and Ardron and Banerjee) are included in his review
papers. Krishnan compared the onset of flooding data obtained
from the experimental and the numerical studies proposed by
those authors, and discussed the possible sources of the unexpected
results which were revealed from the above investigations. Finally
he recommended that new experiments are also needed to provide
information on the mechanism of flooding. The points above high-
light the importance of knowing the current status of research in
this field to better identify the direction of future research

The objective of the present paper is to summarize the recent
developments in research, addressing the behaviour of the counter-
current flow in a complex piping system as the analogy of the PWR
hot leg. Both experimental and modelling efforts are considered. In
the presentreview article, experimental studies on counter-current
flow in a PWR hot leg are intensively reviewed firstly. All effec-
tive possible research subjects were classified generally according
to the elbow configurations (single or multiple). Brief information
on the flow pattern, void fraction, CCFL characteristics and the
involved mechanisms are given. In the second part of this paper,
the analytical developments in this field are presented. In addi-
tion the use of CFD to explore three dimensional (3D) phenomena
around CCFL, as a new research area, is reviewed briefly. Finally, the
scientific reasons why we have had limited success in the mecha-
nistic modelling of CCFL and the future research directions for this
important area are described.

2. Basic terminologies

The basic definitions in counter-current air-water two-phase
flow have been given by Celata et al. (1989). Those include the
terminologies of the onset of flooding and zero penetration point.
For the case of the countercurrent flow in a model PWR hot leg,
the detail terminologies and flow regime have been given by
Deendarlianto et al. (2008), and only the main features are pre-
sented here.

In their experimental work, the liquid flow rate was kept con-
stant, and the air flow rate was increased and decreased in small
increments and decrements respectively. Air-water data in a par-
ticular test section are used for illustrative purposes. The trends
and values will differ for steam-water data under PWR hot leg
conditions. Two tanks were used to simulate the reactor pressure
vessel (RPV) simulator and the steam generator (SG) separator in
the actual German PWR. In the experiment, the air was injected
in the RPV simulator and flowed through the test section to the
SG separator, from which it was released to the atmosphere. The
water from the feed water pump was injected in the SG separator,
from where it could flow in counter-current mode to the air flow
through the test section to the RPV simulator.
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Nomenclature

A area or interfacial area density (m?2)

Bo Bond number (-)

C constant in Egs. (2) and (7) (=)

Cp drag coefficient (—)

G specific heat of liquid at constant pressure (J/(kgK))

D inner pipe diameter (m)

D’ dimensionless number of pipe inner diameter (—)

Dy droplet diameter (m)

Dy hydraulic diameter (m)

fi interfacial friction factors (—)

fwk phase-wall friction factors (—)

g gravitational acceleration (m/s2)

hic specific enthalpy (J/kg)

Jx phase superficial velocity (m/s)

Jup discharged superficial liquid velocity (m/s)

I Wallis dimensionless number of superficial velocity
(-)

Kug Kutateledze dimensionless number of the gas phase
(=)

L characteristic length (m)

Ly length of horizontal leg (m)

I length of riser (m)

m constant in Eq. (2) ()

mg gas mass flow rate (kg/s)

mrp discharged liquid flow rate (kg/s)

Ry thermodynamic ratio (—)

S; normalized of interface width (-)

TL liquid temperature (K)

Tsat saturation temperature (K)

ug phase mean velocity (m/s)

We Weber number (—)

Greek letters

gas void fraction (-)

void fraction at the onset of slugging at the hydraulic
jump near the pipe bend (-)

upward inclination angle from horizontal (degree)
downward inclination angle of the lower leg to the
horizontal

liquid and gas density (kg/m?3)

wall shear stresses of the gas and liquid onto the free
surface

wall shear stress (N/m?)

interfacial shear stress (N/m?2)

List of abbreviations

algebraic interfacial area density
counter-current flow limitation
computational fluid dynamics
Forschungszentrum Karlsruhe
Helmbholtz-Zentrum Dresden Rossendorf
Korean standard nuclear power plant
loss-of-coolant-accident

pressurized water reactor

reactor pressure vessel

steam generator

shear stress transport

upper plenum test facility

volume of fluid

Wasser und Entrainment Kanal
zero-liquid penetration

steam generator

u-tubes

condensate

reactor pressure vessel

cold leg
\

pump seal

Fig.1. Konvoi German PWR piping configuration and reflux condensation flow paths
(Seidel et al., 2010).

For small gas flow rate, the liquid film flows counter currently
with the gas phase in hot leg channel. The pressure difference inside
the test section is still low, and slightly increases with the air mass
flow rate. This regime is defined as the stable countercurrent flow.
As the gas flow rate (mg) is gradually increased, thus, there is the
maximum gas flow rate in which the down-flowing water mass
flow rate (my p) in reactor pressure vessel is equal to the inlet water
mass flow rate. This point is defined as the onset of flooding or
counter-current flow limitation (CCFL) as shown in Fig. 2. With fur-
ther increasing of the air mass flow rate, the down-flowing water
mass flow rate (m; p) in RPV simulator is close to zero. This point
corresponds to the zero liquid penetration (ZP). The region between
the CCFL and ZP is defined as partial delivery region. In turn, when
the gas flow rate is decreased, a point is reached where a fully
counter-current gas-liquid two-phase flow is established. This is
known as the deflooding point.

“Scaling” in general encompasses all differences existing
between a real full-size industrial plant and a corresponding

0.42 . . . . .
PP Zero liquid penetration (ZP)
S - (_)niﬂ_otl]m_)dillg‘ Region II
\ (Partial Delivery
0.39 \ Region) n
)
=0 e
= ) ]
© N
N
8 N
0.36 |- f Region I E
1 > (Stable Counter-
I current Flow)
Deflooding= ~
0.33 " 1 " 1 " i "
0.0 0.1 0.2 0.3 0.4
m, , [kg/s]

Fig. 2. Terminologies in countercurrent gas-liquid two-phase flow in a model of
PWR hot leg presented by Deendarlianto et al. (2008).
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experimental facility. An experiment may differ in geometric
dimensions and shape or event in the applied test facility (Glaeser
and Karwat, 1993). Determination of the parameters needed to
be scaled to the proper dimensions and magnitude to best repre-
sent the test channels is one of the purpose of the countercurrent
flow studies. A number of useful empirical correlations by various
investigators have been proposed over the past several decades
for this purpose. Careful implementation of the suitable related
dimensionless parameters, which requires good understanding of
the experimental phenomenon, is necessary. In the case of vertical
channels, two important dimensionless parameters have emerged:
the Wallis parameter and Kutateladze number (Bankoff and Lee,
1986).

Wallis (1961) proposed the dimensionless parameter, Jx , in
terms of the gas and liquid superficial velocities to correlate the gas
velocity at flooding in vertical tubes. This parameter represents the
ratio of inertial force to hydrostatic force, and is defined as follows:

PK (1)

Je=Ik\] gitp, — pe)

where the subscript Kindicates gas and liquid phases, p the density,
g the acceleration of gravity, and L the characteristic length. In the
case of circular tube, the length scale should be the flow channel
inner diameter. Using this parameter Wallis proposed the following
correlation for the CCFL as,

U2 +mUp)'? =c )

Several investigators (Pushkina and Sorokin, 1969; Alekseev
et al,, 1972) suggested a correlation using the surface tension, o,
instead of inner pipe diameter for defining the suitable dimension-
less quantity. The correlation is incorporated in the Kutateladze
number. It was derived from consideration of the stability of the
liquid film or from the gas flow needed to suspend the largest stable
liquid drop (Levy, 1999), and is defined as follows.

]KP,1</2

I(u,*( =
[go(poL — pc

(3)

In comparing both dimensionless numbers (Egs. (1) and (3)), it
can be seen that both of them do not involve the viscosity of the
fluids. Instead the different presence of the characteristic length
in the Wallis parameter and the surface tension in the Kutate-
ladze number is the main difference. The relation between the two
dimensionless numbers can be made as follows.

Kuj, = J3(D*)'/? (4)

where D’ is the square root of the Bond number, Bo, and is defined
as below.

Bo'/? = D =D[Mr/z (5)
o

In the case of vertical pipe, interpolation between Wallis
and Kutateladze dimensionless numbers have been suggested to
resolve the role of tube diameter (Levy, 1999). The Wallis parame-
ter is valid for the small inner pipe diameter and the Kutateladze for
the large one. Wallis and Makkenchery (1974) noted that the tran-
sition between small and large diameter tubes occurs for a Bond
number of 40.

Zapke and Kroger (2000) present a more recent evaluation of
dimensionless parameters for correlating flooding data. Through a
discussion of properties and flow conditions that could affect flood-
ing, they show that the Froude number (Fr) and the Ohnesorge (Ohy )
number best reproduce air-water flooding data in vertical straight
tubes. The Froude number is a ratio of inertial to buoyancy forces

while the Ohnesorge number is a ratio of liquid viscous to surface
tension properties.

pu?
Fr= —— 6
&Du(pr — pg) (6)

2

_ (ol
Ohy = pLDyo )

where Dy is the hydraulic diameter, and w the liquid viscosity.
The gas Froude number was found to be a function of the liquid
Froude number to the 0.2 power multiplied by the liquid Ohne-
sorge number to the 0.3 power. While the coefficients change, these
parameters reflect well the data for flooding in large diameter tubes
(Solmos et al., 2008).

All of the above parameters were derived for CCFL in straight
vertical tubes, without mass exchange between the phases. The
hot leg phenomena differ in important manners and therefore the
CCFL trigger mechanism is different. Firstly, in a vertical tube with
uninterrupted flow, momentum exchange at the phase interface
dictates the CCFL trigger. The gas phase and the liquid phase are in
contact only at the continuous interface. The CCFL is thought to be
due to a surface instability. In the hot leg, the flow experiences an
interruption atabend, thereby causing secondary flows within each
phase and interfacial interactions at beyond just a continuous inter-
face. Secondly, when vapor is being condensed or generated, the
mass flow rate of either phase is a variable with location in the flow
channel. Condensation will reduce the mass flow rate and drasti-
cally decrease the amount of momentum that the vapour phase is
able to transfer to the liquid phase. Consequently, the force ratios
above are not expected to predict the onset of CCFL in the hot leg.
The correlations are being used in situations beyond those they
were intended for. As will be seen, the nature of the flow channel
bend and other flow parameters are introduced into many of the
empirical correlations for the hot leg flooding.

3. Comprehensive overview of the countercurrent flow
studies in a model of PWR hot leg

In this section, a comprehensive review on the studies of
counter-current flow in a model PWR hot leg is presented. There is
a wealth of information in the journals and texts regarding those
topics. The literature can be broken down into two categories:
experimental investigation and theoretical analysis.

3.1. Experimental investigations

Presented here is a review of the literatures discussing on the
experimental works on CCFL, flooding mechanisms, and correla-
tions for predicting CCFLin a complex piping system that represents
the pipe configuration of the PWR hot leg in a nuclear reactor. From
the view point of application, the review of experimental works
is broken down into two categories: single elbow and multiple
elbows.

3.1.1. Single elbow

Table 1 shows the summary of the available literatures on the
countercurrent flow using a single elbow in a model of PWR hot leg.
In the table the summary includes both experimental and analytical
works, and is listed in chronological order. The latest studies have
been included in this table. The definitions of the geometries of the
channel used in Table 1 are given in Fig. 3.

Table 1 indicates that there are many more studies on counter-
current flow in a complex piping system using the air-water as
test fluids, whereas relatively fewer studies deal with steam-water
(Ohnuki, 1986; Wan, 1986; Mayinger et al., 1993; Glaeser and
Karwat, 1993; Lucas et al., 2008). The possible reason is due to the
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Fig. 3. Idealization of the channel configurations of the countercurrent gas-liquid two-phase flow in a complex piping system using a single elbow.

complexity of phenomenon in the steam-water experiment caused
by the condensation effects. The available studies are described,
respectively, in the following.

One of the earliest works was performed by Richter et al. (1978).
They investigated the CCFL in a 1/30th scale down of PWR hot leg.
The inner pipe diameter was 203 mm. A single elbow was used to
connect the horizontal pipe to an inclined pipe with the inclination
angle of 45°. They noticed that the gas flow required to produce
flooding is much smaller than that for a simple vertical pipe. The
CCFL correlation by using Wallis parameters’ should be appropri-
ate to correlate the limitation of the reverse flow of water into the
steam generator, in which the coefficients of m and C are 1.0 and
0.7 respectively.

Siddiqui et al. (1986) conducted a flooding study in an elbow
between a vertical and horizontal or near horizontal pipe exper-
imentally. This configuration represents the idealization of the
feeder/hot leg pipes in CANDU pressurized heavy water reactor.
The air and water were employed as the working fluids. The CCFL
data were presented in terms of phases Wallis parameters. They
found that the CCFL curves depend on the inner tube diameter, the
length and inclination of the lower leg of the elbow, and radius of
the curvature of the bend. This indicates that the Wallis parameter
is not able to correlate the CCFL data of different inner pipe diame-
ter, although the inner pipe diameter is included in this parameter.
From the visual observation, they found that flooding to be caused
of by slugging at the hydraulic jump that formed in the lower leg
of the elbow close to the bend, and occurs according to the below
equation.

Je=0.2a)? (8)

where o is the local gas void fraction at the crest of the hydraulic
jump.

Ohnuki (1986) conducted a CCFL experimental series in a small
scale PWR hot leg with air-water and saturated steam-water fluid
combinations. Here Ohnuki varied the most important geometrical
aspects of the hot leg: the inner pipe diameter, the length of the
horizontal leg, shape of the upper exit riser, and water head in the
plenum to which the inclined tube is connected. As a basis of the
comparison, similar experiments in an inclined pipe (without hori-
zontal part) were also conducted. The CCFL data was also presented
in terms of the phases Wallis parameters’. Ohnuki found that the
CCFL curve is independent of the combination of the working fluids
(saturated steam-water and air-water). This conclusion is reason-
able for fluids in thermal equilibrium because there is no mass
transfer effect and the saturated steam is able to transfer momen-
tum to water along the length of the test section similar to the
air-to-water momentum transfer. The length of the horizontal part,

length of the riser, and shape of upper exit has a significant effect on
the CCFL. Moreover there was no effect of the inner pipe diameter
and the shape of the bend on the CCFL curve. For a common out-
let of hot leg (with circular cross-section), Ohnuki concluded that a
linear relationship expressed in Wallis parameter can be applied as
a scaling parameter to the CCFL data under atmospheric pressure,
as long as the flow is not an unsteady flow. Finally he proposed a
value of 0.75 for the constant of m and the following function for C:

czln{(%”) (%)}70.066-%0.88 (9)

where I is the length of the inclined riser.

The objective of the investigation in the upper plenum test facil-
ity (UPTF) was to determine the limit of countercurrent flow of
saturated steam-water in 1:1 of a German PWR hot leg. The inner
pipe diameter was 750 mm. The idealization of the UPTF experi-
mental configuration is shown in Fig. 4. As shown in the figure, a
secondary pipe to simulate the emergency core cooling (ECC) port
in a real nuclear reactor also called Hutze, was installed in the hori-
zontal part of the test pipe. The experiments were done under two
system pressures, 3 bars and 15 bars. The CCFL data were plotted
in terms of phases Wallis parameters’ J;, in which the length scale
is calculated from the hydraulic diameter of the effective flow area
at the region with Hutze.

Theresults were reported in series by Weiss and Hertlein (1988),
Weiss et al. (1992), Mayinger et al. (1993), and Glaeser and Karwat
(1993). Experimental results showed that the water run-back to
the test vessel decreases as the steam flow increases. The data at
the two system pressures are in close agreement, and indicate that
the Wallis parameter adequately accounts for this effect (Mayinger
etal,, 1993). Mayinger et al. also compared their CCFL data with the
available experimental correlations derived from sub-scale experi-
ments from Richter et al. and Ohnuki. The Richter correlation passes
through the UPTF data, which is obviously due to the similar con-
figuration of the flow channel.

Later, the analysis of the UPTF experimental results was
extended by Glaeser and Karwat (1993). They reported that the
CCFL data can be correlated by a Wallis-type equation as follows

U2 +m(;)'? = ¢ = Cy(sin 40°) (10)

with m=0.7-1.0 and C; =0.61-0.75. This is in contrast of the con-
clusions of Levy (1999) for straight vertical tubes. Here the Wallis
parameter is used for smaller diameter tubes, where the tube diam-
eter effect is important.

Ohnuki et al. (1988) extended their previous work in order to
assess the possibility of applying Eq. (9) as a scaling parameter for
the actual size of PWR hot leg. Two types of pipe configurations
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Fig. 4. Test channel configurations of the UPTF experiments (Wang and Mayinger, 1995) (dimension in mm).

were adopted in this study: type A having a test section without ECC
injection/Hutze and type B having a test section using the Hutze as
used in the UPTF experiment. The inner pipe diameter was 25.4 mm
for both test sections. The other dimensions for types A and B were
determined by selecting approximately the same value of the ratio
between: (a) length of horizontal pipe to inner pipe diameter, (b)
length of horizontal pipe to that of inclined riser, and (c) the height
of Hutze to inner pipe diameter as those in the UPTF experiment.
They found that when using the superficial velocity and length scale
in the Wallis parameter (J;) estimated by the flow area and the
diameter of the flow path at the region without Hutze, Eq. (9) over-
predicts the UPTF data. In order to eliminate the effect of Hutze, they
modified the flow area and diameter on J; by using combinations
of the hydraulic cross sectional area and hydraulic diameter of the
region of Hutze. Finally, they noticed that the Wallis parameter has
the capability to compensate for the scale effect when the inner
pipe diameter is more than 0.203 m and on the pressure effects of
up to 1.5 MPa. However they were not able to explain these find-
ings in their study. It is interesting to note that it has a contradicting
effect to that of the scaling factor of the CCFL in vertical pipes, in
which the Wallis parameter is valid only for the small inner pipe
diameter as noted by Wallis and Makkenchery (1974).

To better understand the parameters which may influence the
CCFL, an experiment has been carried out by Geffraye et al. (1995)
under the MHYRESA experimental program. The various test sec-
tions included two types of hot leg geometry, three diameters from
0.075 mto 0.351 m and allowed for the investigation of the geomet-
rical effect on the CCFL. The CCFL was determined by two methods.
Those are determined when the pressure drop above the flooding
locus shows a sudden increase and the liquid down-flow rate is
smaller than the feedwater flow rate. From the visual observation,
they noticed that the CCFL never takes place at the SG inlet plenum.
The CCFL data were compared to available experimental data and
empirical correlations, whereas the attention was focused on the
zero liquid penetration point. The comparison was made by using
the Wallis parameter and Kutateladze number. Results showed that
the CCFL point seems to be rather better described by the Wal-
lis parameter in the range of 0.0254-0.75 m. The scattering on the
Wallis parameter is around 50%, whereas it on Kutateladze param-
eter is around 300%. However no general trend can be found when
looking to the smaller scale data. Moreover they pointed out also
that it seem more reasonable to accept that the CCFL in a hot leg

will remain a phenomenon which cannot be predicted with a high
accuracy.

Wan and Krishnan (1986) investigated the air-water flooding
in a 90° elbow with a slightly inclined lower leg. The inclination
angle of the lower leg ranged from +0.35° to —0.25°. The inner pipe
diameter was 51 mm. The purpose of their work was to investigate
thoroughly the effect of small inclinations of the lower leg of an
elbow on flooding behaviour in air-water flow. In general, their
experimental results confirmed the observation of Siddiqui et al.
(1986). At low liquid flow rate, the flooding occurred as a result of
slugging at the crest of a hydraulic jump in the horizontal leg. On the
other hand, at high liquid flow rates corresponding to ]21/2 > 0.5,
no hydraulic jump was observed; flooding occurred due to the slug
formation at the end of the horizontal leg which travelled upstream
to water carry-up through the vertical leg.

Wan (1986) used the same experimental apparatus of that of
Wan and Krishnan to investigate the effect of interface mass trans-
fer during the countercurrent steam-water flow. The subcooling
of the water inlet was up to 6°C. The CCFL data was presented
in terms of Wallis parameters’. Three (3) flow regimes during the
countercurrent steam-water flow were observed. The qualitative
map of those flow regimes is shown in Fig. 5. Those are explained
as follows.

1. Regime I is a region of steady counter-current flow in which the
phases are stratified in the horizontal leg.

2. In regime II, the occurrence of slugging is accompanied by par-
tial or total carry over of the injected water. In the figure, the
boundary between regimes [ and II is marked as boundary #1.
Here the formation of a slug in the horizontal leg was taken as
the inception of flooding. In the case of atmospheric condition,
itis appeared in the range oszl/2 < 0.5. In this range, the effect
of water inlet subcooling was minor.

3. Regime III is a complete penetration of water into the elbow.
Here, an oscillatory water column occurred in the vertical leg
without any carryover of injected water.

In Fig. 5, the boundaries between regimes I and III, and regimes
II and III are respectively marked as boundary #2 and boundary
#3. The CCFL curves are also expressed by those boundaries. The
CCFL curves are dependent upon the inlet water sub-cooling. The
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Fig. 5. Idealized flow regime map for steam-water flow in an elbow (Wan, 1986).

larger the sub-cooling temperatures, the higher the gas velocity at
CCFL. This finding effect was confirmed by Chun and Yu (2000), who
examined the effect of steam condensation on CCFL in nearly hor-
izontal two-phase flow. The difference in the CCFL data between
steam-water and air-water in those regimes related to the com-
plete condensation of injected steam by sub-cooled water under
the influence of a water column head in the vertical leg. To explain
this behaviour, Wan defined the thermodynamic ratio Ry as

_ mLCp(Tsat -Tp)

Rr
mghyg

(11)
For Ry=1 (atmosphere pressure), Eq. (11) can be arranged to
give

1/2
« P Cp(Tsar = T1)
]G:%]L (12)
P hLG

where Ty and Ty are the saturation temperature and liquid tem-
perature respectively. Cp is the specific heat of liquid at constant
temperature at constant pressure, and h; is the specific enthalpy.
Here flooding would be expected to take place for a steam flow only
in the region above the Ry=1 line.

Gardner (1988) and Tehrani et al. (1990) used the same experi-
mental apparatus to study the flooding in a 1/9th scale model of
the hot leg system of the proposed Sizewell ‘B PWR. The inner
pipe diameter was 84 mm. Air and water were used as test flu-
ids. In those works the data on the “low head flooding” and “high
head flooding” that correspond respectively to the terms of “CCFL”
and “deflooding” in the present review article were observed. The
effects of the form of entry to hot leg at the reactor pressure vessel
end and the presence of the tube bundle in the steam generator on
them were also examined. The CCFL data were presented in terms
of the Wallis parameters. Their studies found that at low liquid
flow rate Uf]/z < 0.15) the CCFL data is independent of the above
effects. In comparison between flooding and deflooding experi-
mental data shown that deflooding data are substantial the same
as those for flooding only for low liquid velocities. This indicated
that the hysteresis between flooding and deflooding experiments
appeared.

In order to clarify the effects of the inclination angle of the lower
leg on the CCFL and the physical mechanisms involved in a complex
piping system, Kawaji et al. (1991) performed a flooding experi-
ment in vertical to inclined and vertical to horizontal pipes. The
inner pipe diameter was 51 mm. They found that at low to moderate

liquid flow rates UZ‘]/ 2 < 0.6) the CCFL in vertical-to-downwardly

inclined pipes are higher than that in vertical to horizontal pipes.
The effect of pipe inclination was not observed in their experiments.
This data is a contradictory to that of Wan and Krishnan (1986)
who examined the effect of small change of lower leg inclination
angle, although the experiments were conducted under the same
flow conditions. Next, it is also a contradictory to the data of Barnea
et al. (1986), who examined the effect of pipe inclination angle on
the CCFL in inclined pipes under the same inner pipe diameter,
but without elbow. The possible reason is due to the difference in
the involved flooding mechanisms. In Kawaji et al. experiments,
the flooding mechanisms depended on the liquid flow rate. For
1/2 0.4, it is initiated by the slugging near the elbow, and the

I

liquid entrainment and carryover for]iﬂ/2 < 0.4.0nthe other hand,
in Barnea et al.’s experiments, it is initiated by nature of slugging. In
the present literature, Kawaji et al. also performed a semi analytical
study to predict the CCFL data in their experimental configuration
on the basis of the observed flooding mechanisms, and this will be
discussed in Section 3.2 of the present review article.

Wongwises (1994, 1996a,b) experimentally studied CCFL in a
model of the PWR hot leg with a broad range of the horizontal leg
to inner diameter pipe ratios and inclination angles of the inclined
riser. The inner pipe diameter was 64 mm. The test fluids were
air and water. A conductance cell was implemented to measure
the liquid hold-up near the bend of the horizontal leg within the
uncertainty +2%. The flow phenomena were detected by visual
observations and sometimes by high-speed cameras. The CCFL data
were presented in terms of Wallis parameters. Wongwises (1994,
1996a) reported that the CCFL curves can be divided into three
regions, in each of which the mechanism is different. The mecha-
nisms are dependent on the water flow rate. In first region (/zd/z <
0.2), CCFL decreases as the liquid flow rate increases. The flooding
appears simultaneously with the slugging of unstable waves which
are formed at the crest of the hydraulic jump. The position of the
hydraulic jump is dependent also on the water flow rate. At very
low water flow rates, the hydraulic jump appears near the bend, and
shifts away from the bend with the increase of the water flow rate.
In the second region (0.2 < ]:1/2 < 0.35), the CCFL increases as the
water flow rate increases. Here the flooding locus coincides with
the location of the onset of slugging in the horizontal leg accom-
panied by partial or total carry over of the injected water. In the
third region UZ‘UZ < 0.35), the CCFL decreases as the liquid flow
rate increases. The flow is supercritical throughout the horizontal
leg, and no hydraulic jump is observed.

Next, Wongwises found that the gas velocity at CCFL decreases
with the increase of the length of horizontal leg. The inclination
angle of the riser and the water inlet method play an important
role on flooding in the range of intermediate and high liquid flow
rate. Moreover, the void fraction near the bend around the CCFL,
in which the flooding coincides with the onset of slugging near the
bend, was proposed as follows.

J& =0.82027° (13)

Similar flooding mechanisms as described in the previous para-
graph were alsoreported by Geweke et al. (1992), Kang et al.(1999),
and Chun et al. (1999) under the difference of scale model of PWR
hotleg. Last two literatures from the same groups in Korea reported
the CCFL in a model of the PWR hot leg of the Korean standard
nuclear power plant (KNSPP, Ulchin 3 and 4). Finally, Kang et al.

proposed an empirical correlation in terms of Wallis parameters to
*1/2

predict the initiation of flooding in the first region (J; ' < 0.2) as
below.
U2 +0.397(J;)"/% = 0.603 — 0.00234 (%’) (14)
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Eq. (14) shows that the inclination angle of the inclined riser
does not play an important role as reported Kawaji et al. It is also
contradictory to that reported by Wongwises. However there were
no available explanations on it.

Later Eq. (14) was corrected by Kim and No (2002), which
assessed a total of 356 experimental CCFL data through a literature
survey from 1986 to 1996, and is written as follow.

Ue)"/? +0.614(J;)"/% = 0.635 — 0.00254 (%”) (15)

They claimed that the proposed correlation agrees well with the
literature database within the prediction error, 8.7%.

Gargallo et al. (2005) performed an experimental study
regarding the occurrence of hydraulic jumps in air-water counter-
current two-phase flow by using the WENKA test facility from
Forschungszentrum Karlsruhe (FZK), Germany. The acronym
WENKA stands in German for “Wasser und Entrainment Kanal”,
what means “Water and Entrainment Channel”. The major objec-
tive of their work was to identify flow regimes and understand the
physics of the transition from stable stratified flow to reversed flow.
For this purpose a super-critical water flow was injected to arectan-
gular channel in counter-current to the air flow in order to simulate
the injection of emergency core cooling (ECC) through the “Hutze”
in the hot leg of German PWR. They found that a hydraulic jump
occurs is an initiator for a water flow reversal. Finally, they used the
experimental data to validate their one-dimensional model to pre-
dict the counter-current flow limitations during hot leg injection in
pressurized water reactors. The model indicates that not only the
nondimensional superficial velocities of liquid and gas, but also the
Froude number of the liquid at the injection point and the Reynolds
number of the gasplay an important role for the prediction of flow
reversal.

Navarro (2005) conducted experimental studies on the CCFL in
small scale geometry of the PWR hot legs. The water levels (void
fractions) in three positions along the horizontal leg were measured
using attenuation of gamma-radiation. Next, the effects of the geo-
metrics of test channel on CCFL were observed. Finally, Navarro
proposed a basic formula to predict the CCFL for the test models
in a quadratic form of the Wallis parameters, and when it applied
to the dimensions of a PWR hot leg can be written to a simpler
equation as follow.

Ue)'/? = 0.5963 — 0.2452(;)"/* - 1.17); e

Experiments focusing on the validation of the CFD codes on CCFL
in a model of PWR hot leg are rather limited. The serial works
of the groups from Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
in Dresden (Germany), and Tomiyama and his coworkers in Kobe
(Japan) are exceptions to this, and will be described in the next
sections.

For the sake of the CFD code validation, it is more important to
ensure a good access for measurements of distributed flow parame-
ters than to create an exact geometrical similarity with the original.
In many facilities where CCFL experiments were carried out pre-
viously, optical access was possible (e.g. acrylic glass test section,
sight glass). The observation of the flow was mainly used to support
the interpretation of the results. The few pictures of the flow pub-
lished in the past from experiments in hot leg typical geometries
do not allow the recognition of detailed structures like bubbles and
droplets. Furthermore, since these investigations were performed
in pipes, the optical quality was limited by the 3D shape of the
interfacial structure. For those reasons, CCFL experiments using
advanced experimental technologies in a rectangular channel of
a model of PWR hot leg were carried out by Deendarlianto et al.
(2008), Vallée et al. (2008, 2009), and Lucas et al. (2008) from the
research groups of HZDR.

pressure tank

test section

——

Fig. 6. Pressure vessel of the TOPFLOW facility (Deendarlianto et al., 2008).

In their studies, the cross section of rectangular channel was of
0.05 m x 0.25 m. The height of the rectangular test section (0.25 m)
represented the inner pipe diameter of hot leg pipe of a PWR from
the German Konvoi type at a scale of 1:3. The combinations of test
fluids were air-water (Deendarlianto et al. and Vallée et al.) and
steam-water (Lucas et al.). The test section was put in a pres-
sure chamber, in which it was operated in pressure equilibrium
with the inner atmosphere of the tank in TOPFLOW (transient two-
phase flow) facility as shown in Fig. 6. In their works, the detail
flow behaviour in the bended region during a series of flooding
and deflooding experiments was captured by a high-speed camera.
Similar flooding mechanisms as reported by the previous investi-
gators (Wongwises et al., Kang et al., and Chun et al.) using circular
pipes were obtained. The flooding mechanisms were not influenced
by the changing of system pressures (Deendarlianto et al. and Val-
lée et al.), and the combination of test fluids (Lucas et al.). Next, the
Wallis-parameter ];21/ 2 canbe applied to rectangular cross-sections
by using the channel height as a characteristic length instead of the
inner pipe diameter. The CCFL data of air-water test were in agree-
ment with the available experimental correlations obtained from
circular pipes in the range of low liquid flow rate ((]z‘)l/2 < 0.12).
Moreover, a hysteresis between the flooding and deflooding exper-
iments was investigated, and increases with the increase of water
flow rates (Deendarlianto et al., 2008).

Tomiyama and his co-workers from Kobe-Japan performed a
series experimental works to establish the experimental database
for improvement and validation of numerical analysis models as
shown in the papers of Minami et al. (2008a, 2010a) and Nariai et
al. (2010). The test fluids were air and water. In their works, the
test sections were rectangular channel (Minami et al., 2008a) and
circular tube (Minami et al., 2010a; Nariai et al., 2010). In the case of
rectangular test channel, the cross section was 150 mm x 10 mm.
The height of this rectangular cross section represented 1/5th of
the diameter of the PWR hot leg. For this test channel, the flow
patterns along the channels and CCFL characteristics were investi-
gated. The water levels along the horizontal and inclined legs were
measured by using resistance method of parallel wire probes. The
CCFL data were presented in terms of the phases Wallis-parameter,
Jk', whereas the hydraulic diameter was used as a characteristic
length. They found that the flow patterns in the elbow and inclined
sections were strongly affected by those in the horizontal sections.
The CCFL data are consistent with the Wallis-type correlation and
a linear relationship between]zd/2 and ](*;1/2 was found. Moreover
the void fractions along the pipe under CCFL condition were also
correlated as tabulated in Table 2.
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Table 2
Void fraction around the CCFL along the rectangular cross section (Minami et al.,
2008a).

Locations Void fraction under CCFL

Horizontal channel near elbow
End of horizontal channel near RPV
Inclined section

oG = 0.245 +0.419);
oG = 0.665 +0.38
g = 0.70(2)*°

Toinvestigate the CCFLin a small-scale PWR hot leg Minami et al.
(2010a) also carried out experimental works in a circular pipe. The
inner pipe diameter was 50 mm, represented a 1/15th scale down
of inner pipe diameter of PWR hot leg. The test fluids were also
air and water. The conclusions of this work were almost similar to
those of in rectangular cross sections. In addition, the CCFL charac-

teristics obtained by increasing ]Zl/ 2 differed from those obtained

by decreasing]él/z. This means that a hysteresis between flooding

and deflooding appeared.

Recently in cooperation with the experimental group of HZDR,
Nariai et al. (2010) from the group of Tomiyama examined also
the effect of the fluid properties on CCFL by using water and
glycerol-water solutions for the liquid phase. They found that the
surface tension and liquid viscosities showed a little effect on the
CCFL. This is in contrast to the result of Zapke and Kroger (2000)
for straight vertical tubes and illustrates the effect of test section
geometry.

3.1.2. Multiple elbows

Table 3 shows the summary of the experimental studies on
the countercurrent flow in a model of PWR hot leg using multiple
elbows. Compared with the similar study of the counter-current
flow in a complex piping system using a single elbow, the similar
study using multiple elbows is rather rare.

The earliest research work was performed by Krolewski (1980).
She carried out experimental works to study the flooding and
deflooding in a complex piping system using double elbows. The
test fluids were air and water at atmospheric conditions. The test
facility consisted of a 51 mm inner pipe diameter, 584 mm long hor-
izontal leg connected to vertical and inclined pipes by either a 90°
or a 45° from horizontal. Since not all reactors have the same pri-
mary loop geometry, five different pipe configurations are tested.
Her experimental results indicated that the geometry of the hot
leg pipe has a significant effect on the CCFL. Change in flooding
location caused a slight change in the slope of CCFL curve. Hystere-
sis was significant only in configurations which had 45° elbows
at one end of the test sections. For the flow rates with the high-
est hysteresis effect, the water flow was subcritical at the higher
limit and supercritical at the lower limit. The change from sub-
critical to supercritical flow may account for the wide range of
hysteresis.

Kawaji et al. (1993) carried out flooding experiments in adia-
batic air/water system for three piping geometries each containing
three elbows and an orifice in order to understand the physi-
cal mechanisms involved. The inner pipe diameter was 51 mm.
The tested piping systems were double-vertical elbow, double-
horizontal elbow, and double-inclined elbow. The CCFL was
detected by visual observation. The CCFL data was presented in
terms of Wallis parameters. They reported that the vertical-to-
horizontal geometry with multiple horizontal sections connected
by 90° elbows result the lowest CCFL data. Inclining one of the hori-
zontal sections downward eliminated the hydraulic-jump-induced
flooding mechanism in that section and increased the CCFL. Next,
the placement of an orifice decreased the CFFL. The last conclu-
sion has been accepted by Tye (1998) who studied the effect of
obstructions on CCFL in vertical and horizontal tubes.

Table 3

Summary of investigations on the counter-current flow study in a model of PWR hot leg using multiple elbows.

Analytical study Experimental Study Remarks

N/A

Practical analogy

Experimental conditions

Researcher/year

- The geometry of the hot leg has a significant

effect on the flooding limit

Configuration and hysteresis

effects on CCFL

- Air-water test

Krolewski (1980)

- Hysteresis was significant only in configuration

- Circular tube

45°, The change from

subcritical to supercritical flow may account for

wide range of hysteresis

of elbow inclination angle 8

- Change in flooding location cause a slight change
in the slope of flooding curve. Flooding limit for
each pipe fitting is probably slightly different

- New method based on the superposition

Different angles, inner diameter &

configurations (see attachment)

Configuration effects on CCFL
and involved mechanisms

Semi-analytical

studies

Model of CANDU PWR

hot leg

- Air-water test

Kawaji et al. (1993)

principle was proposed to predict the flooding

condition for complex piping systems

- The effects of the inclining one of the horizontal

sections downward on CCFL and involved

- Circular tube of inner

diameter

51 mm

mechanisms were clarified from experiment

-Tested pipe configurations

1. Double-vertical elbow

2. Double-horizontal elbow
3. Double inclined elbow

- Air-water test

- Empirical CCFL correlations of the represented

test piping system were proposed.

Configuration and hysteresis

effects on CCFL

N/A

Noel et al. (1994)

- Superposition principle proposed by Kawaji et al.

(1993) was not able to predict CCFL.

1:4 scale down model

- Circular tube of inner

of CANDU PWR hot leg

3/4in.
- Two types of complex piping system

(see Fig. 7)

diameter
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Analytical studies for CCFL in a model PWR hot leg

l

| !

1-D stratified two-fluid model

Semi-analytical model

Scaling parameter
[Glaeser (1992),

Free out-Tall assumption
[Ardron and Banetjee (1986),

=>|  Stevanovic and Studovic

(1988), Wongwises (1996Y)]

Envelope theory
[Ohnuki et al. (1988),
—> Geweke et al. (1992),
Minami et al. (2008?),
Nariai et al. (2010)]

Vallee et al. (2010)]

Slugging mechanism near elbow
(Kawaji et al., 1991)

Entrainment and carryover of droplet
(Kawaji et al., 1991)

(De-Bertodano, 1994)

Slugging criterion (Kelvin-Helmholtz)

Fig. 7. Classification of analytical models on the countercurrent flow in a model PWR hot leg.

In relation to the configuration of the PWR hot leg of the
CANDU reactors, Noel et al. (1994 ) performed an air-water flooding
experiment. Two test sections were used. The first test section was
essentially a 1/4 scale down model representing the complexity of
CANDU feeders. It included ten elbows, four vertical sections, five
horizontal sections, and five inclined sections. It referred to as the
“0° inclined test section”. The second was basically the same con-
struction to the first one except that all the horizontal sections had a
5° downward inclination. The inner pipe diameter of both test sec-
tion was 19 mm. In their studies, the CCFL and hysteresis between
flooding and deflooding experiments were clarified. They found
that the declining of the horizontal sections shifted the CCFL curves
upward. Hysteresis between flooding and deflooding occurred only
in the 5° inclined test section (second test section). Based on their
experimental data, the empirical correlation to predict the flooding
and deflooding point in their geometries were proposed as follows.

For the 0° inclined test section:

Uz)"/? =10.139 - 0.827J;]"/?  (Flooding & deflooding) (17)
For the 5° inclined test section:
Ue)V/? =1.675 - 9.500;)"/? +25.77J; — 25.52(J;)*/? (Flooding)
(18)
Uz)V/? = —0.455 - 10.21(J;)"/* — 32.64J;
+28.05(J;)*/? (Deflooding) (19)
In addition, a strong cyclic flooding phenomenon as proven in
the data of time wise of pressure drop was observed for the air

injection below JE ~ 0.33. However the scientific reason for this
effect was not discussed.

3.2. Analytical studies

To explore the dynamics around the CCFL in a PWR hot leg, ana-
lytical models are needed. Several types of analytical studies have

been carried out, focussing on the prediction of the gas velocity
at the inception of flooding, and the assessment of the proposed
analytical models to real size of PWR hot leg. The available ana-
lytical studies are broken down into three categories. Those are
(1) one-dimensional stratified two-fluid model, (2) semi-analytical
studies, and (3) scaling parameters. Those are classified in Fig. 7,
and described respectively in the following.

3.2.1. One-dimensional stratified two-fluid model

To determine the CCFL in a PWR hot leg, 1D stratified two-fluid
model was considered to be used. To solve the momentum and
mass conservation equations in this model, three different view-
points on the basis of flooding mechanisms were proposed in the
literature. The first group considers that the flooding coincides to
the slugging inception in the lower leg of the elbow close to the
bend. Meanwhile the second group suggests use of the envelope
theory to solve the momentum balance equation between the two-
phase in the horizontal part of the model of PWR hot leg. The last
view point implements the available slugging criteria to solve the
momentum balance equations in this model. In any case a purely
theoretical approach seems to be very difficult, whereas most of
researchers used simplified equations from experiments for coun-
tercurrent flow parameters.

The first group was initiated by Ardron and Banerjee (1986).
This model was developed originally on the basis of the observed
flooding mechanisms of the experimental work of Siddiqui et al.
The concept of this model is based on the steady state mass and
momentum balance equations for a counter-current stratified flow
of a liquid film and a gas in a horizontal pipe. CCFL is assumed due
to the onset of slugging in the lower leg of the elbow close to the
bend, where the liquid depth is greatest. The liquid level from the
hydraulic jump to the horizontal leg outlet decreases continually. A
free out-fall is assumed at the horizontal leg exit, implying that the
liquid velocity at this point is equal to critical velocity (the gradi-
ent of the gas void fraction is infinitive). Here viscous interactions
and pressure changes at the interface caused by surface tension
are neglected. Assuming turbulent gas and liquid flow, finally they
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obtained the critical velocity at the horizontal leg exit, when «¢
satisfies the below equation

oo or ., (%
G g - =0 =0 (20)

o’ o?

4s; G L

where S; is the normalized of the width of the gas-liquid interface.

Eq. (20) relates to the void fraction at the horizontal leg exit to
ji‘z .':md]é2 just before flooding inception. To obtain the relationship
between those Wallis parameters’ in terms of Ly /D and the physical
properties, Eq. (20) should be solved together with the momentum
equations of each phase. Here, an iterative procedure coupled with
purely empirical correlations should be used in order to obtain the
solution. Those empirical correlations include the void fraction at
the locus of the hydraulic jump near the pipe bend («), phase-wall
friction factors (f,, ), and interfacial shear stress (t;) as tabulated in
Table 4. From this study, Ardron and Banerjee obtained also a CCFL
curve in the vertical-to-horizontal elbow by using the quadratic fit
forO0<Jf<09as

JEM? = 0.447 — 0.176];'/* — 0.263]; (21)

In Eq. (21) the flow was assumed as an “ideal frictionless flow”,
whereas the gas void fraction near the elbow is equal to that of
the horizontal leg exit. It should be noted that the interfacial fric-
tion has a significant effect on flooding. Therefore the ideal friction
flow assumption is not true physically. This means that Eq. (21)
appears to be an alternative method rather than a new equation
for predicting CCFL in a model of PWR hot leg.

The second group applied the envelope theory to solve the
momentum equations in the two-fluid model. Models based on this
approach include the work of Ohnuki et al. (1988), Geweke et al.
(1992), Minami et al. (2008b), and Nariai et al. (2010). The assump-
tions of uniform flow in steady state, no entrainment, and no phase
change were taken. The envelope is employed to the locus of tan-
gents to the operating lines in the (J¢', Ji*) plane for a constant
void fraction and thus represents a limiting curve separating the
operating region from an unattainable region for countercurrent
flow (Bankoff and Lee, 1985). In this group, it is considered also
that the CCFL corresponds to the retardation of the liquid film due
to the interfacial shear stress. Therefore, three friction coefficients
also play an important role in the calculation. They are available in
literatures, and summarized in Table 5.

The last group implemented the onset of slug flow criteria as a
flooding criterion in a model of the PWR hot leg. Here the flooding
point is determined by the integration of the momentum equations
of a one-dimensional two-fluid model, whereas this slug criterion
was used as a boundary value. This method was introduced by
De Bertodano (1994). The important parameters in this approach
are three friction factors and momentum loss of the elbow. In this
calculation, De Bertodano assumed that f,, =0.04 and f; =2f;. The
hydraulic losses at the elbow were modelled by extending the
length in the horizontal section. Based on this approach, De Berto-
dano showed that the hydraulic jump observed in the small scale
experiment of Krolewski does not occur in a full scale PWR hot leg.
Finally De Bertodano recommended a general flooding correlation
in a PWR hot leg as

*1/2
Ji? +0.676); "%~ 1.019¢ 7V = 0.640 (22)

Eq. (22) was obtained for the countercurrent steam-water two-
phase flow at 0.3 and 1.5MPa. This equation is difficult to use
because an additional expression is needed to calculate the gas void
fraction in order to obtain the dimensionless relative velocity of gas
and liquid (J¢, ). Derived from a fit of this equation, De Bertodano

proposed a CCFL correlation under full scale conditions of PWR hot
leg as

J2 40,7981 = 0.619 (23)

3.2.2. Semi analytical model

From the visual observation, Kawaji et al. (1991) developed
two semi-analytical methods to determine the CCFL in this com-
plex piping system. Those are slugging mechanism near the elbow
and entrainment of liquid droplet. In those methods, the relative
velocity between the gas and liquid near the elbow at the flooding
inception must be accurately determined. It was taken from the
assumption that the annular flow in the vertical pipe is maintained
for some distance past the elbow in the entrance section of the
inclined leg. The gas void fraction near the elbow can be calculated
from the available liquid film thickness equation of annular flow.

For the slugging mechanism near the elbow, Kawaji et al
modified a correlation of slugging criterion near horizontal pipe
proposed by Taitel and Dukler (1976). Their modified equation can
be written as

Jo g _ 0.5(cr¢)'/?
% %\ /pg/(pL— pc)gD cos O

where 6 is the inclination angle of the lower leg to the horizontal.
They reported also that Eq. (24) is in agreement with their experi-
mental data for low liquid flow rate, in which the inclination of the
lower legs were 112.5° and 135° from vertical.

For the second mechanism, Kawaji et al. (1991) considered the
entrainment and carryover of droplets generated as a result of the
breakup of the turbulent jetlike liquid stream. The break-up is nec-
essary but not a sufficient condition for flooding, as the droplet
must be entrained and carried upstream by the gas flow. In this
approach a simple force balance on a droplet of given diameter
moving in a countercurrent flow of a gas with a relative velocity
(vg + v) was considered. To prevent the droplets from falling down
into the liquid stream flowing along the bottom of the inclined pipe,
the relative velocity must be sufficient high to balance the verti-
cal components of drag, gravity, and buoyancy forces on a droplet
of diameter D;. Assuming that the droplet is spherical, the final
equation for the minimum relative velocity required for droplet
carryover can be described as

(24)

ac a3

For a given droplet diameter, Eq. (25) is solved iteratively using
the available drag coefficient correlation (Cp) in the literature appli-
cable to a spherical particle such as proposed by Wallis (1969) as

24

_ 1/2
Jo \h_ 2 {g(m pg)Dd} (25)
pcCp sin 6

E Re; < 1

Co=9 2411 0.15Re3%7) 1 <Rey < 10° (26)
Red
0.44 103 < Reg <2 x 10°

where

Rey = Pc(v +v1)Dyg (27)

1226

They reported that this model is in agreement with their exper-
imental data at the liquid superficial velocities greater than about
0.15m/s when the inclinations of the lower leg were 135° and
157.5° from vertical, for which the slugging mechanism model does
not apply. Here a constant Weber number based on local liquid
velocity (We = pLufDd/o) was chosen as We=100. However Tye
(1998) is in disagreement with this approach. Tye noticed that
the use of the liquid density and velocity in the Weber number
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Table 4

Different proposed empirical correlations to solve Eq. (18) and momentum equations in 1D two-fluid model approach.
References/year Qg siug Near the elbow [—] Sfwk [-] 7; [N/m?]
Ardron and Banerjee (1986) Jz=02 a3/2 (From Siddiqui et al., 1986) fwk = CRe," Ti=Tuwc

Stevanovic and Studovic (1995) Ji = 0.2/ (From Siddiqui et al., 1986)

Wongwises (1996b) Iz =0.820a6%7

For turbulent flow, C=0.046 & n=0.2
For laminar flow, C=16 &n=1

fwk = CRe," 7 = f; % |ug — ur| (ug — ur)

For turbulent flow, C=0.046 & n=0.2 For the smooth liquid film, f; = fow
(From Taitel and Dukler, 1976)

For laminar flow, C=16 &n=1 For the wavy liquid film,
fi=0.14 x 10~>Rep+0.021 (From Kim
et al., 1986)

fwk = CRe;:n Ti=Twc

For turbulent flow, C=0.046 & n=0.2
For laminar flow, C=16 & n=1

implies that the drop size is controlled at formation. His dis-
agreement is supported by the theory of Smits et al. (1993) and
Kocamustafaogullari et al. (1994). Those theories indicated that
the drop size is controlled by break-up mechanisms caused by the
interaction of the droplet and the gas stream. Therefore it yields
physically unrealistic droplet size at low liquid velocities.

In the case of analytical or semi-analytical works on the CCFL
in a PWR hot leg using multiple elbows was limited to be found in
open literatures. For this purpose, Kawaji et al. (1993) introduced
“a superposition principle”. In this principle the piping system is
represented as a combination of simple geometries (vertical, hor-
izontal or inclined pipes). The most limiting gas velocities as each
liquid flow rate are combined to obtain the predicted CCFL con-
ditions over the entire range of liquid flow rates. Later Noel et al.
reported that this simple superposition method was not able to
predict the CCFL in complex piping geometries of 1/4 scale of the
feeder pipes of a CANDU reactor.

3.2.3. Scaling parameters

The determination of suitable parameters to correlate the CCFL
data is one of the purposes of the researches on countercurrent
gas-liquid two-phase flow. Meanwhile the experimental data to
fulfil this effort are not sufficient. The development of scaling
laws from the view point of analytical work is a possible solu-
tion. However, there is only one paper (Glaeser, 1992) related to
the development of scaling parameter from the view point of an
analytical solution.

Glaeser (1992) provided a simple theoretical basis for the exten-
sion of the flooding equation in order to decide the suitable scaling
parameters between the Wallis parameter and the Kutateladze
number of countercurrent flow in a full geometry reactor scale. In
this work, the scaling parameter in a separated countercurrent flow
in a PWR hot leg is assumed as that in a horizontal pipe. The final
equation of his work (Eq. (16) of his paper) leads into Wallis param-
eter as written in Eq. (2) of the present article review. As a result
Glaeser concluded that the Wallis parameter can be applied for the

chance to the Kutateladze number criterion in contrast to vertical
countercurrent flow.

In order to be able to determine the appropriate characteristic
length in the Wallis parameter to correlate the CCFL in a model
of PWR hot leg, Vallée et al. (in press) performed a comparison
studies on the air-water CCFL data of HZDR obtained from a rect-
angular cross-section with similar experimental data. A detailed
comparison of the rectangular cross section test facility operated
at the Kobe University (Minami et al., 2008a) and at HZDR was
done. Here, clear differences in the dimensions of the cross-section
(Hx W=150mm x 10 mm at Kobe University, 250 mm x 50 mm at
HZDR) make it possible to point out the right characteristic length
for hot leg models with rectangular cross-sections. They found that
the channel height is the characteristic length to be applied to the
Wallis parameter for channels with rectangular cross sections. In
comparison to the CCFL data obtained at the Kobe University, the
HZDR data was obtained at slightly higher gaseous Wallis param-
eters. This effect occurred due to the aspect ratio chosen for the
Kobe test section is too large (H/w = 15), which affects the flooding
behaviour.

Some additional remarks are given regarding the analytical and
semi analytical studies on the countercurrent flow in a model of
PWR hot leg:

1. Although all the investigator of the analytical works reported a
successful analytical model development, there was no an agree-
ment on the using of interfacial friction factor as an important
parameter as shown in Tables 4 and 5. Therefore it is possible to
conclude that the developed analytical models agree well only
with their own data or selected data in their range of validity.

2. The user adjustment in the calculations still cannot be avoided,
although some reasons were provided. For example, De Berto-
danoreduced the coefficient of the slug flow criterion of Mishima
and Ishii from 0.487 to 0.3 to match the experimental data
of Ohnuki et al. with his model. Then, the using of We=100
of Kawaji et al. in their entrainment model is also another

countercurrent flow in a horizontal large pipe, therefore there is no example.
Table 5
Different proposed empirical correlations implemented to momentum balance equation.
References/year o-] Sk [-] 7; [N/m?]
* 3/2
Ohnuki et al. (1988) I = 0'5(%)4/8 (@>0.6) } For turbulent flow, For laminar flow, f,,; = 16/Re;, 7 = £ % Jug — ur| (ug — ur), where
Ji=2.8(ac)"® (0.5<a<0.6) f-1.84f
i wL
Minami Near the bend, o = 0.245 + 0.419J¢ fwk=0.02 i =f; ”75 |lug — ur| (ug — ur), where
etal. fi=0.04
(2008a,b) At horizontal leg exit,
ac = 0.665 + 0.380]2
Nariai et al. (2010) oG = 0.94(];‘;)0'316 For turbulent flow, 7 = f; % |ug — ug| (ug — ur), where
fuk = 0.079(Re) %% (Re, < 10%) £i=0.0074
fuke = 0.0008 + 0.05525(Re ) °%7  (Rey > 10°)

For laminar flow, f,x = 16/Rey
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3. The analytical or semi-analytical works of the countercurrent
flow in a model of PWR hot leg using multiple elbows are not
enough to understand the CCFL mechanisms. Further improve-
ment of the superposition principle proposed by Kawaji et al.
should be a promising way.

In summary of the review of the analytical studies of this topic,
it is suggested that the further researches in the above aspects are
encouraged in the near future.

4. Computational fluid dynamics (CFD) modelling

The detailed three-dimensional (3D) information of the tran-
sient behaviour around CCFL in a model of PWR hot leg becomes a
new requirement in the reactor safety analysis. The interactions
between the phases, which are determined by interfacial trans-
fers, can only be revealed by computational fluid dynamics (CFD).
CFD allows substituting geometry-dependent empirical closure
relations with more physically justified closure laws that are for-
mulated at the scale of the structures of the gas-liquid interface. In
this way, CFD is more flexible than one-dimensional analytical solu-
tion, in terms of transferability of models to changes in geometrical
and thermodynamic boundary conditions.

The introducing of CFD method on the countercurrent flow in
a model of PWR hot leg includes the investigation of CCFL mech-
anisms, heat transfer effects, flow patterns, hysteresis behaviour,
and the extension of the obtained flow behaviour from small
scale to full reactor scale. However, the available literature regard-
ing this important topic is rare. The serial works of Wang and
Mayinger (1995) from Muenchen-Germany, Murase and his co-
workers in Tsuruga-Japan, Deendarlianto and his co-workers in
Dresden-Germany are exception to this. In order to identify the
scientific progresses on this effort, a brief review on this subject is
presented here.

Wang and Mayinger (1995) simulated a thermal-hydraulic
phenomena specific in the counter-current flow under UPTF
experimental conditions. The calculations were conducted for two-
dimensional, steady state, adiabatic and incompressible. Here mass
and momentum balances for each phase were treated separately.
The interphase momentum transfer is denoted by the interfacial
friction factor. For this reason, they implemented empirical cor-
relations of the interfacial friction proposed by Lee and Bankoff
(1993) and Ohnuki (1986) into the code FLOWS3D. In this calcu-
lation, inlet flow parameters were set to be constant and fully
developed assumption was applied to the outlet. Turbulence was
modelled as an extension of single-phase flow standard k-¢ model.
They reported that satisfactory results were obtained, whereas,
under the reflux condensation conditions, numerical computation
reveals that different flow structures appeared in the region away
from flooding curve and in the region near the flooding curve. Next,
the calculated water level and vapour velocity agree with the UPTF
measurement results.

Murase and his co-workers in Tsuruga-Japan are in disagree-
ment with the study of Wang and Mayinger. They claimed that the
effects of wall friction cannot be correctly evaluated by using two-
dimensional analysis. The given boundary conditions at the inlet
and outlet of the hot leg in the above work might affect the calcu-
lated flow patterns in the hot leg. For this reason they conducted
3D CFD calculations. The summaries of their CFD works will be dis-
cussed (Murase et al., 2009; Minami et al., 2009, 2010b; Kinoshita
et al., 2009; Utanohara et al., 2009).

Murase et al. (2009), Minami et al. (2009, 2010b) and Utanohara
et al. (2009) conducted 3D CFD simulations on countercurrent flow
in a PWR hot-leg air-water two-phase flow in a 1/15th scale model.
This calculation model reproduced the size of experimental test

facility at Kobe University as reported by Minami et al. (2010a).
Their works included the effects of interfacial friction correlation
(Utanohara et al.), flow patterns and CCFL (Murase et al., 2009;
Minami et al., 2009, 2010b). They implemented the volume of fluid
(VOF) and Euler-Euler two-fluid models on the commercial CFD
code FLUENT®6.3.26. The required interfacial friction correlations in
the Euler-Euler two-fluid model were selected from a combination
of available 1D experimental correlations for the cases of annular
and slug flow that gave the best agreement with the experimen-
tal data. For all their calculations the total number of meshes is
about 70,000. They concluded that it is better to use the two-fluid
model with suitable interface friction correlation than VOF model.
The predicted flow patterns, hysteresis behaviours, and CCFL char-
acteristics agree well with their experimental data.

Kinoshita et al. (2009) carried out numerical simulation for
countercurrent steam-water flow under PWR plant condition by
using the same CFD code. Although the model was enlarged to be
15 times of the previous calculation model, the number of meshes
was similar. In comparison to their previous works it is noticed that
the interfacial friction correlation used in this calculation is still
the same. In the analysis of the plant condition, they showed that
the hysteresis appeared in the increasing and decreasing stages of
steam flow rates. It has a contradictory to their original assumption
that the waves were likely to develop so hysteresis did not appear.
This is possible due to their calculation meshes being relatively
large, which is not recommended by the best practice guidelines
(BPG) for the use of CFD in nuclear reactor safety applications
(Menter, 2002). In this BPG it is clearly noticed that repeat runs
with different meshes should be performed to give an indication of
the degree of precision of the results. In addition, the approximation
of physical processes by implementation of empirical correlations
in their CFD simulations might also lead to an error.

The development of a general model closer to physics and
including less empiricism is a long-term objective of the activi-
ties of the HZDR research programs. Such models are an essential
precondition for the application of CFD codes to the modelling of
flow related phenomena in nuclear facilities. Here local geometry
independent models for mass, momentum, heat transfer, and scalar
transport are developed and validated. One of the developed sci-
entific method to solve the above problems was the new concept
of drag coefficient in the algebraic interfacial area density model
(AIAD) (Hohne, 2009).

The AIAD model reflects the morphologies of the phases by
appropriate parameters in the drag force. The ideas of the model
are:

- The interfacial area density allows the detection of the morpho-
logical form and the corresponding switching of each correlation
from one object pair to another.

- It provides a law for the interfacial area density and the drag coef-
ficient for full range of void fraction. The interfacial area density
in the intermediate range is set to the interfacial area density for
free surface.

- The model improves the physical modelling in the asymptotic
limits of bubbly and droplet flows, and the interfacial area density
in the intermediate range is set to the interfacial area density for
free surface.

More recently, Deendarlianto et al. (2010) from the same group
of Héhne at HZDR carried a CFD simulation of the counter-current
flow under HZDR experimental conditions. One air-water and
one steam-water CCFL experiments were selected from HZDR
test series for the CFD simulation. The simulations were carried
out using a commercial CFD code of ANSYS CFX with a 3D two-
fluid Euler-Euler model. In the calculation model, the grid consists
of 248,610 hexahedral elements and 281,076 nodes. Due to the
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Fig. 8. Calculated CCFL characteristics in a model of PWR hot leg (Deendarlianto
etal,, 2010).
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insufficient computer resources, grid independence test was not
performed. On the other hand, very carefully developed struc-
tured mesh for most of the flow field was adequate, at which the
local refinement on them were carried out. The calculations were
carried out in fully transient manner using a gas/liquid inhomoge-
neous multiphase flow model coupled with a shear stress transport
(SST) turbulence model. The time step and simulation time for
each case were 10~4 s and four months by using four parallel pro-
cessors respectively. In the simulation, the drag coefficient was
approached by the AIAD model. The results indicated that quantita-
tive agreement of the CCFL characteristics between the calculation
and experimental data was obtained as shown in Fig. 8. Next the
flow characteristics shown in the experiment such as the occur-
rence of hydraulic jump near the bended region of the PWR hot
leg and liquid slug were reproduced in simulation, whereas were
not possible produced using the default model of the available CFD
models.

The above result (Deendarlianto et al., 2010) indicates that the
AIAD model is a promising way to simulate the phenomena around
CCFL in a PWR hot leg. Moreover the further improvement of the
model should be carried out. Here the usage of the morphology
detection algorithm should also be possible also in vertical flow
regimes. Therefore it is necessary to include the modelling of non-
drag forces (lift force, wall lubrication force, virtual mass force
etc.) in the AIAD model as well as the available complete for poly-
dispersed flows. Next the turbulence damping procedures should
include the existence of small surface instabilities in the macro-
scopic model. In addition the numerical approach of the AIAD
model should be improved to further reduce the calculation time.

5. Discussion

As described in the previous sections implicitly, a lot of experi-
mental and analytical works as well as CFD modelling on counter-
current flow in a model of PWR hot leg have been performed. In

spite of this, the physical mechanisms leading CCFL are still not yet
fully understood, and continuously experimental efforts are still
required. From the comprehensive overview of the experimental
works, we can see some contradictory conclusions about flooding
mechanisms, although they were carried out under the same exper-
imental conditions. Even though, the basic topology of the hydraulic
jumpis not well understood, although the hydraulic jump enhances
the slug formation as one of the responsible mechanism.

CCFL in a real PWR condition is a problem involving an inter-
connection of fluid dynamic, thermodynamic and heat transfer.
Therefore it is very difficult to obtain a general conclusion from a
simple experimental result in isolated condition. In other words,
presently we have no physical measure to capture the impor-
tant parameters on CCFL. This is undoubtedly one of the reasons
why we have limited success in mechanistic modelling of flooding.
For example, if we change the test liquid temperature, the physi-
cal properties of the liquid also change which accordingly affects
the interfacial heat transfer between gas and liquid. However a
systematically explanation regarding this point is not available
in open literature. Therefore, it is very useful to investigate the
effect of mass transfer on CCFL in space and time. Consequently the
CCFL data of steam-water close to the real PWR model should be
obtained. A wide range of system pressures and working fluid tem-
peratures should be considered also in this experimental program
in order to explore the scaling effect.

Inrespect to the above problem, the qualitative method to deter-
mine the effect of steam condensation on the flooding mechanisms,
and local parameters should be observed. Hence, the use of advance
experimental procedure and apparatus, such as the optimized opti-
cal technique and recently developed mesh wire sensor are needed
in the near future. Mesh wire sensor can be used to provide the
information of the cross sectional distribution of the steam vol-
ume fraction. In addition, the measurement of local temperature is
also important to provide the information of the condensed steam
locally. Further understandings of these components are needed
to understanding of flooding mechanism and development of ana-
lytical model. In actual fact, in recent years, a lot of experimental
works reported visual observations obtained using a high speed
video camera. Meanwhile it was mainly used to support the inter-
pretation of the results only, and was not possible to recognize
detailed structures of flows.

The last decade has seen an increasing use of 3D CFD codes to
explain the phenomena around CCFL since it cannot be predicted
by traditional one-dimensional system codes with the required
accuracy and spatial resolution. CFD codes contain models for sim-
ulating turbulence, heat transfer, multiphase flows, and chemical
reactions. Such models must be validated before they can be used
with sufficient confidence. The necessary validation is performed
by comparing model results against measured data. However, in
order to obtain a reliable model assessment, CFD simulations for
validation purposes must satisfy strict quality criteria given in the
Best Practice Guidelines (BPGs).

6. Conclusions

In the present paper, a comprehensive review on countercurrent
gas-liquid two-phase flow in a PWR hot leg was presented. Exper-
imental as well as theoretical studies on CCFL in a PWR hot leg
have been critically assessed. A brief review regarding the imple-
mentation of CFD codes in this topic was also provided. The review
improves our understanding on the present status of this research.
Several research directions in this field have been also identified.
In the long term, both experimental and analytical research efforts
should be attempted in order to develop a fundamental CCFL model
on the basis of systematic experimental data.
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New flow measurement techniques with advance image pro-
cessing should be employed to elucidate the involved mechanism
around CCFL in a model PWR hot leg. The obtained experimental
data using these advanced techniques will provide high reliability
information in terms of space and time. Those are very useful for
the validation of the analytical model development including CFD
and understanding the underlying flooding mechanisms.
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